Model-data assimilation of multiple phenological observations to constrain and predict leaf area index.
نویسندگان
چکیده
Our limited ability to accurately simulate leaf phenology is a leading source of uncertainty in models of ecosystem carbon cycling. We evaluate if continuously updating canopy state variables with observations is beneficial for predicting phenological events. We employed ensemble adjustment Kalman filter (EAKF) to update predictions of leaf area index (LAI) and leaf extension using tower-based photosynthetically active radiation (PAR) and moderate resolution imaging spectrometer (MODIS) data for 2002-2005 at Willow Creek, Wisconsin, USA, a mature, even-aged, northern hardwood, deciduous forest. The ecosystem demography model version 2 (ED2) was used as the prediction model, forced by offline climate data. EAKF successfully incorporated information from both the observations and model predictions weighted by their respective uncertainties. The resulting. estimate reproduced the observed leaf phenological cycle in the spring and the fall better than a parametric model prediction. These results indicate that during spring the observations contribute most in determining the correct bud-burst date, after which the model performs well, but accurately modeling fall leaf senesce requires continuous model updating from observations. While the predicted net ecosystem exchange (NEE) of CO2 precedes tower observations and unassimilated model predictions in the spring, overall the prediction follows observed NEE better than the model alone. Our results show state data assimilation successfully simulates the evolution of plant leaf phenology and improves model predictions of forest NEE.
منابع مشابه
A global reanalysis of vegetation phenology
[1] Simulations of the global water and carbon cycle are sensitive to the model representation of vegetation phenology. Current phenology models are empirical, and few predict both phenological timing and leaf state. Our previous study demonstrated how satellite data assimilation employing an Ensemble Kalman Filter yields realistic phenological model parameters for several ecosystem types. In t...
متن کاملAssimilation of satellite reflectance data into a dynamical leaf model to infer seasonally varying leaf areas for climate and carbon models
[1] Leaf area index is an important input for many climate and carbon models. The widely used leaf area products derived from satellite-observed surface reflectances contain substantial erratic fluctuations in time due to inadequate atmospheric corrections and observational and retrieval uncertainties. These fluctuations are inconsistent with the seasonal dynamics of leaf area, known to be grad...
متن کاملImproving Winter Wheat Yield Estimation from the CERES-Wheat Model to Assimilate Leaf Area Index with Different Assimilation Methods and Spatio-Temporal Scales
To improve the accuracy of winter wheat yield estimation, the Crop Environment Resource Synthesis for Wheat (CERES-Wheat) model with an assimilation strategy was performed by assimilating measured or remotely-sensed leaf area index (LAI) values. The performances of the crop model for two different assimilation methods were compared by employing particle filters (PF) and the proper orthogonal de...
متن کاملAssimilating remote sensing observations of leaf area index and soil moisture for wheat yield estimates: An observing system simulation experiment
[1] Observing system simulation experiments were used to investigate ensemble Bayesian state-updating data assimilation of observations of leaf area index (LAI) and soil moisture ( ) for the purpose of improving single-season wheat yield estimates with the Decision Support System for Agrotechnology Transfer (DSSAT) CropSim-Ceres model. Assimilation was conducted in an energy-limited environment...
متن کاملThe phenology of leaf quality and its within-canopy variation is essential for accurate modeling of photosynthesis in tropical evergreen forests.
Leaf quantity (i.e., canopy leaf area index, LAI), quality (i.e., per-area photosynthetic capacity), and longevity all influence the photosynthetic seasonality of tropical evergreen forests. However, these components of tropical leaf phenology are poorly represented in most terrestrial biosphere models (TBMs). Here, we explored alternative options for the representation of leaf phenology effect...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Ecological applications : a publication of the Ecological Society of America
دوره 25 2 شماره
صفحات -
تاریخ انتشار 2015